If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4.905t^2+29.4t=0
a = -4.905; b = 29.4; c = 0;
Δ = b2-4ac
Δ = 29.42-4·(-4.905)·0
Δ = 864.36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(29.4)-\sqrt{864.36}}{2*-4.905}=\frac{-29.4-\sqrt{864.36}}{-9.81} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(29.4)+\sqrt{864.36}}{2*-4.905}=\frac{-29.4+\sqrt{864.36}}{-9.81} $
| 80+9x+4+16x+4=A | | (3x-4)(2x-8)=0 | | 5x9=3x+7 | | -2-8x=-4x-2 | | 7n2-448=0 | | 1.75c=20 | | 133=7x-2 | | -4u-35=7(u+6) | | -3x+14=-58 | | 21x+5+70=180 | | 501=u-399 | | -7(v-91)=-28 | | 18-b=12 | | -33=3(-5+x) | | x*0.075=29 | | 6/8=20/x | | 9-8x=3x+7 | | 96=5w+11 | | 5x+32=8-8 | | (4-v)-(11+2v=) | | 16=-8u+6(u+3) | | -7(h-82)=-70 | | y+96=180 | | 3x+4+2x+6=0 | | 1/3(3x=9)=5 | | 0+14=t | | 2=u/3-6 | | 2x+3x+x=14 | | 120+34+c=180 | | 5(x-3)+1=5-14 | | (3x-3)+(3x-4)=6x-7 | | 2+(a/4)=6 |